Grid size can vary by a considerable amount. Grids are a form of distributed computing whereby a “super virtual computer” is composed of many networked loosely coupled computers acting together to perform very large tasks. Furthermore, “Distributed” or “grid” computing in general is a special type of parallel computing that relies on complete computers (with onboard CPUs, storage, power supplies, network interfaces, etc.) connected to a network (private, public or the Internet) by a conventional network interface, such as Ethernet. This is in contrast to the traditional notion of a supercomputer, which has many processors connected by a local high-speed computer bus
Overview
Grid computing combines computer from multiple administrative domains to reach common goal.[1] to solve a single task and may then disappear just as quickly.One of the main strategies of grid computing is to use middleware to divide and apportion pieces of a program among several computers, sometimes up to many thousands. Grid computing involves computation in a distributed fashion, which may also involve the aggregation of large-scale cluster computing-based systems.
The size of a grid may vary from small—confined to a network of computer workstations within a corporation, for example—to large, public collaborations across many companies and networks. "The notion of a confined grid may also be known as an intra-nodes cooperation whilst the notion of a larger, wider grid may thus refer to an inter-nodes cooperation".[2]
Grids are a form of distributed computing whereby a “super virtual computer” is composed of many networked loosely coupled computers acting together to perform very large tasks. This technology has been applied to computationally intensive scientific, mathematical, and academic problems through volunteer computing, and it is used in commercial enterprises for such diverse applications as drug discovery, economic forecasting, seismic analysis, and back office data processing in support for e-commerce and Web services.
Comparison of grids and conventional supercomputers
“Distributed” or “grid” computing in general is a special type of parallel computing that relies on complete computers (with onboard CPUs, storage, power supplies, network interfaces, etc.) connected to a network (private, public or the Internet) by a conventional network interface, such as Ethernet. This is in contrast to the traditional notion of a supercomputer, which has many processors connected by a local high-speed computer bus.[citation needed]The primary advantage of distributed computing is that each node can be purchased as commodity hardware, which, when combined, can produce a similar computing resource as multiprocessor supercomputer, but at a lower cost. This is due to the economies of scale of producing commodity hardware, compared to the lower efficiency of designing and constructing a small number of custom supercomputers. The primary performance disadvantage is that the various processors and local storage areas do not have high-speed connections. This arrangement is thus well-suited to applications in which multiple parallel computations can take place independently, without the need to communicate intermediate results between processors.[citation needed] The high-end scalability of geographically dispersed grids is generally favorable, due to the low need for connectivity between nodes relative to the capacity of the public Internet.[citation needed]
There are also some differences in programming and deployment. It can be costly and difficult to write programs that can run in the environment of a supercomputer, which may have a custom operating system, or require the program to address concurrency issues. If a problem can be adequately parallelized, a “thin” layer of “grid” infrastructure can allow conventional, standalone programs, given a different part of the same problem, to run on multiple machines. This makes it possible to write and debug on a single conventional machine, and eliminates complications due to multiple instances of the same program running in the same shared memory and storage space at the same time.[citation needed]
Design considerations and variations
One feature of distributed grids is that they can be formed from computing resources belonging to multiple individuals or organizations (known as multiple administrative domains). This can facilitate commercial transactions, as in utility computing, or make it easier to assemble volunteer computing networks.[citation needed]One disadvantage of this feature is that the computers which are actually performing the calculations might not be entirely trustworthy. The designers of the system must thus introduce measures to prevent malfunctions or malicious participants from producing false, misleading, or erroneous results, and from using the system as an attack vector. This often involves assigning work randomly to different nodes (presumably with different owners) and checking that at least two different nodes report the same answer for a given work unit. Discrepancies would identify malfunctioning and malicious nodes.[citation needed]
Due to the lack of central control over the hardware, there is no way to guarantee that nodes will not drop out of the network at random times. Some nodes (like laptops or dialup Internet customers) may also be available for computation but not network communications for unpredictable periods. These variations can be accommodated by assigning large work units (thus reducing the need for continuous network connectivity) and reassigning work units when a given node fails to report its results in expected time.[citation needed]
The impacts of trust and availability on performance and development difficulty can influence the choice of whether to deploy onto a dedicated computer cluster, to idle machines internal to the developing organization, or to an open external network of volunteers or contractors.[citation needed] In many cases, the participating nodes must trust the central system not to abuse the access that is being granted, by interfering with the operation of other programs, mangling stored information, transmitting private data, or creating new security holes. Other systems employ measures to reduce the amount of trust “client” nodes must place in the central system such as placing applications in virtual machines.[citation needed]
Public systems or those crossing administrative domains (including different departments in the same organization) often result in the need to run on heterogeneous systems, using different operating systems and hardware architectures. With many languages, there is a trade off between investment in software development and the number of platforms that can be supported (and thus the size of the resulting network). Cross-platform languages can reduce the need to make this trade off, though potentially at the expense of high performance on any given node (due to run-time interpretation or lack of optimization for the particular platform).[citation needed]
Various middleware projects have created generic infrastructure to allow diverse scientific and commercial projects to harness a particular associated grid or for the purpose of setting up new grids. BOINC is a common one for various academic projects seeking public volunteers;[citation needed] more are listed at the end of the article.
In fact, the middleware can be seen as a layer between the hardware and the software. On top of the middleware, a number of technical areas have to be considered, and these may or may not be middleware independent. Example areas include SLA management, Trust and Security, Virtual organization management, License Management, Portals and Data Management. These technical areas may be taken care of in a commercial solution, though the cutting edge of each area is often found within specific research projects examining the field.[citation needed]
Market segmentation of the grid computing market
According to IT-Tude.com, for the segmentation of the grid computing market, two perspectives need to be considered: the provider side and the user side:The provider side
The overall grid market comprises several specific markets. These are the grid middleware market, the market for grid-enabled applications, the utility computing market, and the software-as-a-service (SaaS) market.Grid middleware is a specific software product, which enables the sharing of heterogeneous resources, and Virtual Organizations. It is installed and integrated into the existing infrastructure of the involved company or companies, and provides a special layer placed among the heterogeneous infrastructure and the specific user applications. Major grid middlewares are Globus Toolkit, gLite, and UNICORE.
Utility computing is referred to as the provision of grid computing and applications as service either as an open grid utility or as a hosting solution for one organization or a VO. Major players in the utility computing market are Sun Microsystems, IBM, and HP.
Grid-enabled applications are specific software applications that can utilize grid infrastructure. This is made possible by the use of grid middleware, as pointed out above.
Software as a service (SaaS) is “software that is owned, delivered and managed remotely by one or more providers.” (Gartner 2007) Additionally, SaaS applications are based on a single set of common code and data definitions. They are consumed in a one-to-many model, and SaaS uses a Pay As You Go (PAYG) model or a subscription model that is based on usage. Providers of SaaS do not necessarily own the computing resources themselves, which are required to run their SaaS. Therefore, SaaS providers may draw upon the utility computing market. The utility computing market provides computing resources for SaaS providers.
[The user side
For companies on the demand or user side of the grid computing market, the different segments have significant implications for their IT deployment strategy. The IT deployment strategy as well as the type of IT investments made are relevant aspects for potential grid users and play an important role for grid adoption.CPU scavenging
CPU-scavenging, cycle-scavenging, cycle stealing, or shared computing creates a “grid” from the unused resources in a network of participants (whether worldwide or internal to an organization). Typically this technique uses desktop computer instruction cycles that would otherwise be wasted at night, during lunch, or even in the scattered seconds throughout the day when the computer is waiting for user input or slow devices.Volunteer computing projects use the CPU scavenging model almost exclusively.[citation needed]
In practice, participating computers also donate some supporting amount of disk storage space, RAM, and network bandwidth, in addition to raw CPU power. Heat produced by CPU power in rooms with many computers can be used for fine heating premises.[3] Since nodes are likely to go "offline" from time to time, as their owners use their resources for their primary purpose, this model must be designed to handle such contingencies.
History
The term grid computing originated in the early 1990s as a metaphor for making computer power as easy to access as an electric power grid in Ian Foster's and Carl Kesselman's seminal work, "The Grid: Blueprint for a new computing infrastructure" (1999).CPU scavenging and volunteer computing were popularized beginning in 1997 by distributed.net and later in 1999 by SETI@home to harness the power of networked PCs worldwide, in order to solve CPU-intensive research problems.[citation needed]
The ideas of the grid (including those from distributed computing, object-oriented programming, and Web services) were brought together by Ian Foster, Carl Kesselman, and Steve Tuecke, widely regarded as the "fathers of the grid".[4] They led the effort to create the Globus Toolkit incorporating not just computation management but also storage management, security provisioning, data movement, monitoring, and a toolkit for developing additional services based on the same infrastructure, including agreement negotiation, notification mechanisms, trigger services, and information aggregation. While the Globus Toolkit remains the de facto standard for building grid solutions, a number of other tools have been built that answer some subset of services needed to create an enterprise or global grid.
In 2007 the term cloud computing came into popularity, which is conceptually similar to the canonical Foster definition of grid computing (in terms of computing resources being consumed as electricity is from the power grid). Indeed, grid computing is often (but not always) associated with the delivery of cloud computing systems as exemplified by the AppLogic system from 3tera.[citation needed]
Fastest virtual supercomputers
- BOINC – 5.128PFLOPS as of Apr 24th 2010.[5]
- Folding@Home – 5 PFLOPS, as of March 17, 2009 [6]
- As of April 2010[update], MilkyWay@Home computes at over 1.6 PFLOPS, with a large amount of this work coming from GPUs.[7]
- As of April 2010[update], SETI@Home computes data averages more than 730 TFLOPS.[8]
- As of April 2010[update], Einstein@Home is crunching more than 210 TFLOPS.[9]
- As of April 2010[update], GIMPS is sustaining 44 TFLOPS.[10]
Current projects and applications
Main article: List of distributed computing projects
Grids computing offer a way to solve Grand Challenge problems such as protein folding, financial modeling, earthquake simulation, and climate/weather modeling. Grids offer a way of using the information technology resources optimally inside an organization. They also provide a means for offering information technology as a utility for commercial and noncommercial clients, with those clients paying only for what they use, as with electricity or water.Grid computing is being applied by the National Science Foundation's National Technology Grid, NASA's Information Power Grid, Pratt & Whitney, Bristol-Myers Squibb Co., and American Express.[citation needed]
One of the most famous cycle-scavenging networks is SETI@home, which was using more than 3 million computers to achieve 23.37 sustained teraflops (979 lifetime teraflops) as of September 2001[update].[11]
As of August 2009 Folding@home achieves more than 4 petaflops on over 350,000 machines.
The European Union has been a major proponent of grid computing. Many projects have been funded through the framework programme of the European Commission. Many of the projects are highlighted below, but two deserve special mention: BEinGRID and Enabling Grids for E-sciencE.[citation needed]
BEinGRID (Business Experiments in Grid) is a research project partly funded by the European commission[citation needed] as an Integrated Project under the Sixth Framework Programme (FP6) sponsorship program. Started in June 1, 2006, the project will run 42 months, until November 2009. The project is coordinated by Atos Origin. According to the project fact sheet, their mission is “to establish effective routes to foster the adoption of grid computing across the EU and to stimulate research into innovative business models using Grid technologies”. To extract best practice and common themes from the experimental implementations, two groups of consultants are analyzing a series of pilots, one technical, one business. The results of these cross analyzes are provided by the website IT-Tude.com. The project is significant not only for its long duration, but also for its budget, which at 24.8 million Euros, is the largest of any FP6 integrated project. Of this, 15.7 million is provided by the European commission and the remainder by its 98 contributing partner companies.
The Enabling Grids for E-sciencE project, which is based in the European Union and includes sites in Asia and the United States, is a follow-up project to the European DataGrid (EDG) and is arguably the largest computing grid on the planet. This, along with the LHC Computing Grid[12] (LCG), has been developed to support the experiments using the CERN Large Hadron Collider. The LCG project is driven by CERN's need to handle huge amounts of data, where storage rates of several gigabytes per second (10 petabytes per year) are required. A list of active sites participating within LCG can be found online[13] as can real time monitoring of the EGEE infrastructure.[14] The relevant software and documentation is also publicly accessible.[15] There is speculation that dedicated fiber optic links, such as those installed by CERN to address the LCG's data-intensive needs, may one day be available to home users thereby providing internet services at speeds up to 10,000 times faster than a traditional broadband connection.[16]
Another well-known project is distributed.net, which was started in 1997 and has run a number of successful projects in its history.
The NASA Advanced Supercomputing facility (NAS) has run genetic algorithms using the Condor cycle scavenger running on about 350 Sun and SGI workstations.
Until April 27, 2007, United Devices operated the United Devices Cancer Research Project based on its Grid MP product, which cycle-scavenges on volunteer PCs connected to the Internet. As of June 2005[update], the Grid MP ran on about 3.1 million machines.[17]
Another well-known project is the World Community Grid. The World Community Grid's mission is to create the largest public computing grid that benefits humanity. This work is built on belief that technological innovation combined with visionary scientific research and large-scale volunteerism can change our world for the better. IBM Corporation has donated the hardware, software, technical services, and expertise to build the infrastructure for World Community Grid and provides free hosting, maintenance, and support.[citation needed]
Definitions
Today there are many definitions of grid computing:- In his article “What is the Grid? A Three Point Checklist”[1], Ian Foster lists these primary attributes:
- Computing resources are not administered centrally.
- Open standards are used.
- Nontrivial quality of service is achieved.
- Plaszczak/Wellner[18] define grid technology as "the technology that enables resource virtualization, on-demand provisioning, and service (resource) sharing between organizations."
- IBM defines grid computing as “the ability, using a set of open standards and protocols, to gain access to applications and data, processing power, storage capacity and a vast array of other computing resources over the Internet. A grid is a type of parallel and distributed system that enables the sharing, selection, and aggregation of resources distributed across ‘multiple’ administrative domains based on their (resources) availability, capacity, performance, cost and users' quality-of-service requirements”.[19]
- An earlier example of the notion of computing as utility was in 1965 by MIT's Fernando Corbató. Corbató and the other designers of the Multics operating system envisioned a computer facility operating “like a power company or water company”. http://www.multicians.org/fjcc3.html
- Buyya/Venugopal[20] define grid as "a type of parallel and distributed system that enables the sharing, selection, and aggregation of geographically distributed autonomous resources dynamically at runtime depending on their availability, capability, performance, cost, and users' quality-of-service requirements".
- CERN, one of the largest users of grid technology, talk of The Grid: “a service for sharing computer power and data storage capacity over the Internet.” [21]
No comments:
Post a Comment